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                                                                       Abstract  
Electric Discharge Machining process is one of the earliest and most extensively used unconventional 

machining process. It is a non-contact machining process that uses a series of electric discharges to 

remove material from an electrically conductive workpieces. The EDM process parameter are pulse 

on time, duty factor, peak current, peak voltage, flushing pressure. This study is aimed to do a 

comprehensive study of the EDM, develop a model that can predict the machining characteristic and 

then optimize the output parameters. Artificial Neural Network processes the information by 

transferring the data between its basic building block i.e. Artificial Neuron. Genetic algorithm is a 

metaheuristic technique used to find the best fit and approximate solutions to optimization and search 

problems. In this project we proposed a GA-ANN hybrid model. Also comparison is studied the 

experimental values and ANN predicted values. GA-ANN model concludes that the error calculated 

in experimental values V/S ANN-GA predicted values is very less compared to experimental values 

V/S ANN predicted values.  

 

1. Introduction 
Electrical Discharge Machining (EDM) is one of the earliest and most 

extensively used machining process. It is a thermal metal erosion 

process that uses series of electrical discharges to remove material 

from an electrically conductive workpiece. Unlike the traditional 

machining processes such as drilling, milling, turning etc. there is no 

contact between the workpiece and the tool in the EDM process, i.e. 

instead of using mechanical forces to fracture the material, a series of 

electrical pulses is used to erode it. The electrical discharges 

occurring due to the pulsating voltage applied across the electrodes 

results in melting of the workpiece which is then flushed by the 

surrounding dielectric. 

During the EDM process a gap of about 40 µm is maintained between 

the electrodes using a servo mechanism and a pulsating direct current 

supply is connected across them. As shown in Fig. 1 which describes 

the general schematic diagram of Electro Discharge Machining, the 

electrodes are immersed in a dielectric material such as hydrocarbon 

oil, deionized water, cutting oils etc. When a gap voltage (Vg ≈ 200V) 

is applied across the electrodes, due to  the resulting high electric field 

between the electrodes, breakdown of the in between dielectric 

material takes place and a plasma channel is developed after a certain 

delay time. Once the plasma channel is set up, discharge current starts 

flowing in the circuit, the voltage across the electrodes falls to a lower 

value (Vd ≈ 25V), during this pulse on time (ton), the temperature of 

the plasma reaches as high as 40,000K and a melt pool of the molten 

electrodes is produced [1]. Due to such a high temperature 

vaporization of the electrodes as well as the dielectric takes place, the 

gases formed confines the plasma channel in a bubble and the 

pressure within this gas bubble can be as high as 14 bars. This high 

pressure results in superheating of the molten metal. When the 

applied voltage turns off during the pulse off time (toff), the gas bubble 

implodes violently flushing the molten metal out of the melt pool, and 

a crater about 100 µm wide is left out. The voltage and pulse 

waveforms measured at the gap in a typical EDM operation is shown 

in Fig. 2. This process is repeated many times throughout the whole 

workpiece surface during the machining process, to remove the 

desired amount of material from the workpiece. A more detailed 

description of the material erosion mechanism is given in section 

2.1.2. 

2. Types of Edm Processes 
The most common types of EDM are:- 

1. Die Sinking EDM:- The die-sinker EDM uses a shaped tool 

electrode and workpiece which are immersed in a dielectric fluid, 

when the voltage is applied across the electrodes, erosion of  
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Fig. 1: Schematic Diagram of an EDM machine [2] 

 
Fig. 2: Voltage and Pulse waveforms of an EDM machine [3] 

workpiece takes place and the tool the tool shape is replicated on it.  

 

2. Wire EDM (WEDM):- The wire EDM uses a thin continuously 

travelling metallic wire usually made of copper, brass or tungsten 

and having a diameter of around 0.05-0.3mm. This wire is always 

kept in tension using a mechanical tensioning device and is fed 

through the workpiece which is submerged in a dielectric fluid. 

The metal ahead of the wire gets eroded, and the wire is controlled 

numerically to produce desired shapes and cavities without the 

requirement of pre-shaped electrodes. De-ionized water is mostly 

used as the dielectric fluid in case of WEDM, due to its low 

viscosity and fast cooling rate [4]. 

Using wire EDM hard conductive materials can be machined easily 

to produce complex and precision components. The WEDM can 

produce surface finish as fine as 0.04-0.25 µRa, and the residual 

stresses in the EDMed surface is very low. Typical cutting rates of 
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WEDM are  300 mm2/min for a 50 mm thick D2 tool steel and 750 

mm2/min for a 150 mm thick aluminium plate.  Fig. 3 shows the 

schematic diagram of the wire EDM process. 

 
Fig. 3: Schematic Diagram of Wire EDM [6] 

 
Fig.4: Diagrammatic Representation of EDM metal erosion 

mechanism 

Pandey and Jilani [10-12] presented a thermo-mathematical model 

describing the EDM process. For a disc shaped heat source and a 

semi-infinite workpiece, the cylindrical heat conduction equation was 

solved numerically with appropriate initial and boundary conditions, 

taking into account the effect of plasma channel widening [11]. 

Consideration of the plasma channel expansion improves the 

consistency between the theoretically predicted values and the 

experimental outcomes. Thickness of the heat affected zones were 

also predicted with reasonable accuracy [10]. The effect of non-

rectangular pulses on the material removal and the relative electrode 

wear was studied and the optimum current  pulse form in terms of the 

relative electrode wear was found out [12]. F S Van Dijck et al. [13] 

calculated the exact solution of a two dimensional transient heat 

conduction equation for a semi-infinite body subjected to a time 

dependent uniform heat flux. Plasma channel widening is taken into 

account to improve the accuracy of the model. Pandit and Rajurkar 

[14] developed a hybrid thermal model of transient temperature 

distribution in the EDM process using Data Dependent Systems 

(DDS) and the heat conduction equation. A complex and stochastic 

process such as EDM can be modeled using DDS directly from the 

experimental data, and any other knowledge about the system is not 

required in this approach. A first order DDS model of the machined 

surface generated after EDM process is combined with the heat 

conduction equation using some realistic assumptions. The model 

used a circular heat source and semi infinite workpiece assumption  

and the results matched well with the experimental results. A. Erden 

et al. [15] examined 8 different Mathematical models of EDM 

process and compared their predictions with experimental outcomes. 

He concluded that the point heat source model used by Zingerman 

and Carslaw gave satisfactory result with low computation time but 

the predicted crater shape was in accurate while the model developed 

by Pandey and Jilani [10], gave the best results among 2D models in 

terms of crater volume and computing time.  

An extensive research on the EDM process was carried out at the 

Texas A&M University, and a series of three papers was released 

afterwards. The first paper by DiBitonto et al. [1] proposed a simple 

cathode erosion model of the EDM process. Several simplifying 

assumptions were used, that apply to a cathode erosion model with 

reasonable accuracy, such as a point heat source model; a constant 

fraction of the total power is lost to the cathode independent of current 

and pulse time; average thermo physical properties of the cathode 

material apply to the range of solid to liquid etc. The model predicted 

the pulse time with an average of 16% error for steel, when the model 

was tuned to a single experimental point of 12.8A current. They also 

presented a dimensionless universal model of the EDM process, that 

included two dimensionless parameters g (optimum pulse time factor) 

and j (erodibility). At last the Compton's energy balance for gas 

discharges was modified for EDM process. In the second paper 

Mukund R. Patel et al. [16] proposed an anode erosion model, in 

which all the simplifying assumptions similar to the above paper were 

used. The plasma radius expansion at the Anode was also taken into 

consideration and a Gaussian heat flux distribution was used. The 

model is able to show the rapid melting of the anode material and its 

successive resolidification at longer pulse times and predict the 

erosion rate curves qualitatively correct. Also the plasma flushing 

efficiency predicted by this model is within experimental uncertainty 

compared to the experimental data of the AGIE EDM technologies. 

The third paper by Phillip T. Eubank et al. [17] presents a variable 

mass cylindrical plasma model for the sparks created in a liquid 

dielectric by the electrical discharge during EDM process. The 

theoretical model is formulated by solving three differential equations 

i.e. a fluid mechanics equation, an energy balance equation, and a 

radiation balance equation combined with a plasma equation of state. 

Numerical solutions of these equations are developed yielding 

temperature, plasma radius, mass and pressure as a function of pulse 

times for fixed current, electrode gap and the power fraction 

remaining in the plasma. These three papers although based on 

comprehensive research used oversimplifying assumptions and are 

unable to give satisfactory results for small discharge energies. 

The material removal rate during an EDM process is affected by 

various process parameters, out of which the pulse waveform is 

among the most influential factor. A. Erden et al. [18] studied the 

effect of different energy pulse forms on the MRR and relative 

electrode wear. He concluded that the commonly used rectangular 

pulses are not the optimum pulse forms and more general pulse 

shapes offer better MRR and lower REW. Out of these pulses he 

advocated for trapezoidal, because they can be achieved cheaply and 

the trapezoidal pulses with negative slopes gives high MRR in 

comparison to the rectangular pulses although REW is also high 

while positive slopes give less MRR as well as less REW.  

Singh and Ghosh [8] proposed that the electrostatic forces acting on 

the metal surface are responsible for metal removal in case of short 

pulses (discharge duration < 5µs), while melting is the dominant 

factor for metal removal in case of long discharge durations 

(discharge duration > 100 µs). They estimated the electrostatic forces 

acting on the surface of the metal and the stress distribution within 

the metal due to the electrostatic forces. The model explains that 

crater depth is independent of the discharge duration (td), for small 

values of td and increases for medium discharge duration. 

3.Numerical/Computational Models 
Equations governing the EDM process are hard to model and solve 

using analytical techniques, hence a large number of researchers have 

heeled toward the use of numerical methods. Numerous papers are 

present devoted to the numerical modeling of the EDM process [3,19-

25]. All the different factors that influence the EDM performance are 

tried to be incorporated in these computational models, to improve 

the model accuracy. 

P. Shankar et al. [25] used finite element method to solve equations 

governing the temperature and current simultaneously. In the model 

discharge process and heat transfer within the electrodes and 

dielectric were accounted. The variations in the material properties 

with change in temperature was used in the model. The electrode 
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region was divided into a 2D mesh using an automatic mesh 

generation program and the Glaerkin's method was used to solve the 

partial differential equations. The spark profile, energy distribution 

between the electrodes, MRR and REW was calculated and compared 

with the experimental results.  Discrepancies were found between the 

experimental and theoretically predicted MRR and REW values, 

because of the assumption made while formulating the model.  

Marafona and Chousal [24] proposed a Joule heating based model, in 

which heat dissipated by the cylindrical heat source is governed by 

Joule heating effect. ABAQUS software was used to develop a FEM 

model, and the results were compared with Ref. [1]. The two results 

followed the same pattern but appreciable discrepancy was present 

between the two models. A user subroutine was used by Y.B. Guo et 

al. [22] to develop Gaussian heat flux distribution in a multiscale 

diesinker EDM model of ASP2023 tool steel.  

The finite element computational packages (such as ANSYS, 

ABAQUS, HYPERMESH etc.) provide an interactive tool to 

researchers using which they can model complex processes, which 

will otherwise be very hard or even impossible to model using 

analytical methods. H. K. Kansal et al. [26] used the finite element 

method to develop a model of the powder mixed EDM (PWEDM) 

process. Critical features such as change in material properties with 

temperature, heat distribution between the electrodes, size and shape 

of heat source, pulse on/off time, phase change of material, material 

ejection efficiency were considered in the model, and the effect of 

different process parameters on the temperature distribution was 

analyzed. Their model predicted MRR values with good accuracy, 

compared to the experimental results. They also concluded that the 

PMEDM model produced craters which are smaller and shallow 

craters. Borja Izquierdo et al. [27] developed a finite element model 

addressing the successive discharges that takes place in a real EDM 

process in spite of the single discharge model used by most of the 

researchers.   

4. ANN Models 
Artificial neural networks are intelligent tools which can be used to 

model complex nonlinear relationships between variables by 

mimicking the working process a nervous system [31]. An artificial 

neural network consists of a network of artificial neurons that can 

learn the complicated relationship between the input variable such as 

various process parameters like discharge voltage, current, machining 

time, pulse on time etc.  and the corresponding output variable i.e. 

surface roughness, MRR etc. A set of experiments is designed and 

fed to appropriate ANN model, which models the interrelation 

between the input and output variables and then can be used to predict 

the outcome of an out of set machining parameter set The data set 

provided to the ANN model is divided into two sets, namely, training 

and testing data sets. The training data set is used to train the neural 

network while testing data set is used to check the accuracy of the 

model's prediction. A number of researchers [32-41] used ANN to 

create a model of the EDM process, to predict the effect of various 

process parameters [34,37,39] and for the process optimization 

[32,35,38,41]. 

Assarzadeh and Ghoreishi [35] used a 3-6-4-2 neural network trained 

to model the EDM process of BD3 steel material machined using 

copper electrode. Here 3-6-4-2 denotes that the neural network had 4 

layers, one input layer with 3 neurons, two hidden layers with 6 and 

4 neurons respectively and one output layer with 2 neurons. The 

machining was carried out 96 times using different input parameters 

out of which 82 sets were used for training and the rest for testing. 

The trained network predicted the MRR and Ra values for the testing 

data set with 5.31% and 4.89% mean error.  

The selection of optimum network topology is a rigorous process and 

there is no general method available for its prediction, hence usually 

the trial and error approach is used for its selection. Panda and Bhoi 

[38] provided a detailed comparison of the performance of ANN 

models having different number of hidden layers and the number of 

neurons in each layer, that was  used for the prediction of metal 

removal rate corresponding to input parameters. The network was 

trained using Levenberg Marquardt Backpropagation algorithm. The 

3-7-1 network was found to give the most accurate results. Tsai and 

Wang [33] compared six different neural networks and a neuro-fuzzy 

network in terms of the error in their predicted outputs. The neuro-

fuzzy system was found optimal for the given experimental data set. 

A genetic algorithm is a robust heuristic global optimization tool that 

can be used to calculate global maxima in a multimodal search space. 

GA's are coupled with neural networks in two different ways. 

Genetic Algorithms are used to optimize the EDM process by 

selecting the machining input parameters corresponding to the 

optimum output characteristic, such as high MRR, or low Ra etc. 

using a trained neural network[33,38,43,44]. 

A hybrid approach has been adapted by some researchers in which 

GA is used to optimize the network weights in order to improve the 

network predictions [33,37]. 

4.1 Experimental Data 
The experimental data presented in table 1 has been used to develop 

a Hybrid GA-ANN based model that can predict the machining 

characteristic using the set of machining inputs and its output. The 

experiments were performed on ELECTRONICA-ELECTRAPLUS 

PS 50ZNC (die sinking type) EDM machine in the LML company in 

Kanpur (U.P). This data has been used with due permission from the 

original experimenter.  

Set of experiment were designed using a L27 orthogonal array with 5 

input parameters and one output parameter. The selected input 

parameters are Gap Voltage, Pulse Current, Pulse On Time, Pulse Off 

time, and Flushing pressure, and the corresponding measure output is 

the Material Removal Rate (MRR). This set of experiments is used to 

develop a neural network model which can accurately predict 

interpolate machining output for off sample data points, i.e. set of 

machining inputs which area are not present in the experimental set.  

Table 1: Experimental Set of Data 

Exp.No 

Gap 

voltage 

(V) 

Pulse 

current 

(A) 

Pulse 

off 

time 

(µs) 

Pulse 

on 

time 

(µs) 

Flushing 

pressure 

(kg/cm2) 

MRR 

(gm/min) 

1 50 9 15 90 0.25 0.092805 

2 50 9 15 90 0.50 0.095663 

3 50 9 15 90 0.75 0.099430 

4 50 12 45 120 0.25 0.138074 

5 50 12 45 120 0.50 0.141079 

6 50 12 45 120 0.75 0.137190 

7 50 15 90 150 0.25 0.158560 

8 50 15 90 150 0.50 0.145560 

9 50 15 90 150 0.75 0.160241 

10 60 9 45 150 0.25 0.065670 

11 60 9 45 150 0.50 0.065600 

12 60 9 45 150 0.75 0.065480 

13 60 12 90 90 0.25 0.065408 

14 60 12 90 90 0.50 0.144221 

15 60 12 90 90 0.75 0.150787 

16 60 15 15 120 0.25 0.154021 

17 60 15 15 120 0.50 0.175421 

18 60 15 15 120 0.75 0.176577 

19 70 9 90 120 0.25 0.074460 

20 70 9 90 120 0.50 0.069428 

21 70 9 90 120 0.75 0.071915 

22 70 12 15 150 0.25 0.094715 

23 70 12 15 150 0.50 0.096211 

24 70 12 15 150 0.75 0.098076 

25 70 15 45 90 0.25 0.180139 

26 70 15 45 90 0.50 0.171739 

27 70 15 45 90 0.50 0.180506 

 

ensured then using the validation points, and then the model is used 

to predict the outcome at the set of input parameters corresponding to 

the testing data points, which were not fed to the neural network 

during the training process. The corresponding regression plot is 

shown in figure 5. The comparison between the experimental 
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outcomes and the network predicted values is shown in figure 6. The 

total correlation coefficient is found to be equal to 0.9987 for the 

ANN model. 

Table-2: Parameter values of Feed-forward Backpropagation neural 

network 

Topology of the Neural Network Feed-forward 

Learning Algorithm Scaled Conjugate Gradient 

Number of hidden layers 1 

Number of neurons in hidden layer 10 

Iterations 2000 

Max-validation checks 20 

Performance function Mean Square Error 

Number of weight elements 71 

 Training Divide Function Random 

Training ratio 0.7 

Validation ratio 0.15 

Testing ratio 0.15 

 

 
Fig.5: Regression curve of ANN model 

4.2 GA-ANN model 
A hybrid GA-ANN model was then developed afterwards using the 

same parameter settings selected for the ANN model as shown in 

Table 2. Table 3 shows the various parameters selected for the 

Genetic algorithm program that is used as a training algorithm in this 

model. The corresponding regression curve is shown in Fig. 16, and 

the Fig. 17 shows the comparison between the GA-ANN model 

predicted values and the experimental values.  

Total Correlation coefficient of 1 is obtained using the hybrid model. 

As it can be seen from the figures 7 and 8, significant improvement 

in the network predictions are obtained on using the hybrid training 

algorithm. Figure 8 compares the errors between the predicted and 

the actual values for the two models.  

From the figure 9, the maximum error in case of the ANN model that 

was around 17.52% reduces to 7.5% in case of the GA-ANN model 

which means is 43% decrease in the maximum error. It shows that 

the developed GA-ANN model is better than the simple ANN model.  

Optimum Machining output Prediction :- The developed hybrid GA-

ANN model is then used to calculate the optimum machining 

characteristics and the corresponding set of input parameters. The 

control of the developed model was passed to a genetic algorithm 

which generates a population of set of input parameters in the form 

of  chromosomes. The fitness function was selected as the MRR. 

These chromosomes are then evolved to the optimum MRR value by 

using the genetic operators. The result of which is shown in Table 4. 

The maximum MRR value obtained in the experimental data set is 

0.180506 gm/cc, while the optimum value of MRR obtained is 0.2184 

gm/cc which is a 21% increase in the material removal rate.

 
Fig.6: Comparison between the ANN predicted and experimental 

outcomes for the ANN model 

Table-3: Parameter values of the Genetic Algorithm 

Population Size 200 

Population Type Double Vector 

Selection Function Stochastic Uniform 

Crossover Method Scattered Crossover 

Mutation Method Gaussian 

Mutation Probability 0.01 

Stopping Criterion Tolerance Value 

Tolerance Value 10-15 

 
Fig. 7: Regression curve of ANN model 
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Fig.8: Comparison between the ANN predicted and experimental 

outcomes for the GA-ANN model 

 
Fig. 9: Error Histogram of the GA-ANN & ANN model 

Table-4: Optimum Machining Characteristics. 

Machining parameters for achieving Maximum MRR 

Gap Voltage 56.907 

Pulse Current 15.00 

Pulse off time 44.99 

Pulse on time 123.67 

Flushing Pressure 0.5069 

MRR 0.2184 

Conclusions 
 A large number of different techniques and methods are used for 

EDM process modeling, e.g. mathematical models, analytical 

models, numerical/computational models and AI based models. 

 None of these models are perfect and certain disadvantages are 

present with all these models. 

 The mathematical models are found to give satisfactory results 

only, due to complexity of the process and the large assumptions 

made to simplify the model. 

 Numerical models are very accurate in their predictions and can 

incorporate most of the factors in the model. 

 Analytical models require expensive experimentation, valid in 

the experimental range and have limited accuracy. 

 The AI models are widely by researchers recently and have good 

generalization capability and quite accurate in their predictions. 

 The Hybrid GA-ANN model gave better results in comparison 

to the simple ANN model, and using it a 47% decrease in the 

maximum prediction error is noticed. 

 A 21% increase in the MRR is got when this model is used to 

predict the optimum machining characteristic. 
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